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Transversal Chaos Spaces and
Asymptotic Fixed Points

Milan R. Tasković

Abstract. This paper continues the study of the transversal spaces.
In this sense we formulate a new structure of spaces which we call it
transversal chaos spaces. Also, this paper presents an extended asymp-
totic fixed point theory.

1. Introduction and history

The notion of distance d(x, y) between points x and y is very old and is essen-
tion connection with measurement. Certainly, the notion is present in works of
T h a l e s of M i l e t (circa 624 B.C.-546 B.C.), one of the seven wise men of the
Antic Greece, the first man who predicted the eclipse of the sun (for the year 585
B.C.); he performed various calculations with distance and angles.

A perpetual monument to the old notion of distance is the Pythagoras Theorem
on triangles of P y t h a g o r a s of S a m o s (circa 560 B.C. - 480 B.C.). In fact,
this theorem was already known in Babylon at the time of K i n g H a m m u r a b i
(circa 1728 B.C. - 1686 B.C.).

Presumably, however, it was a mathematician of the Pythagorean school who
first proved the Pythagorean theorem. This theorem appears as Proposition 47 in
Book I of Euclid’s Elements (300 B.C.).

The concept of an abstract metric space, introduced by M. F r é c h e t in 1905,
furnishes the common idealization of a large number of mathematical, physical and
other scientific constructs in which the notion of a distance appears.

The objects under consideration may be most varied. The may be points, func-
tions, sets, and even the subjective experiences of sensations. A generalization
which was first introduced by K. M e n g e r in 1942 and, following him, is called
a statistical metric space.

In 1934 Ð. K u r e p a defined pseudodistancional spaces, with the nonnumerical
distance, which play an important role in nonlinear numerical analysis (see: L.
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C o l l a t z [7]). After that several authors investigated the distance functions
taking values in partially ordered sets (A. A p p e r t, M. F r é c h e t, J. C o l m e z,
R. D o s s, Ky F a n, and others in the year’s 40’s and 50’s).

Concept of transversal spaces where introduced in 1998 by T a s k o v i ć as
a nature extension of F r é c h e t ’ s, K u r e p a ’ s, and M e n g e r ’ s spaces in
the following sense. The transversal spaces play an important role in nonlinear
functional analysis as and in numerical analysis.

Let X be a nonempty set and let P := (P,4) be a partially ordered set. The
function ρ : X×X → P is called an upper transverse on X (or upper transversal)
iff: ρ[x, y] = ρ[y, x], and if there is an upper bisection function g : P × P → P
such that

ρ[x, y] 4 sup
{
ρ[x, z], ρ[z, y], g

(
ρ[x, z], ρ[z, y]

)}
(A)

for all x, y, z ∈ X. A transversal upper space is a set X together with a given
upper transverse on X. We call that an element ζ ∈ P is a spring of transversal
upper space X iff: ρ[x, y] = ζ if and only if x = y.

Let k = ℵα(α > 0) be a regular cardinal. Call a topological spaceX an upper k-
transversal space or a g(Dα)-space if there exists ρ : X ×X → ωα ∪{ωα} := W
such that ρ[x, y] = ωα if and only if x = y, ρ[x, y] = ρ[y, x], and if there is
g : W ×W →W such that (A) for all x, y, z ∈ X. We notice, Fréchet’s spaces are
important examples of upper k-transversal spaces.

Open problem 1. Does for every regular cardinal k > ℵα there exists an
upper k-transversal nonlinearly orderable topological space? Does some of upper
transversal spaces have the fixed point property?

Let X be a nonempty set and we chosen an upper bisection function g : (R0
+)2 →

R0
+ := [0,+∞) defined in the following sense by

g(s, t) = ψ(s) + τt (τ > 1, ψ : R0
+ → R0

+)

for a self-map ψ with the property ψ(x) → 0 (x → 0), then X is an example
of transversal upper space, which where introduced in 1974 by M. C i c c h e s e.
Special case of this spaces recently in 1998 is considered S. C z e r w i k.

In connection with the preceding, let P := (P,4) be a partially ordered set. The
function ρ : X ×X → P is colled a lower transverse on X (or lower transversal)
iff: ρ[x, y] = ρ[y, x] and if there is a lower bisection function d : P × P → P
such that

inf
{
ρ[x, z], ρ[z, y], d

(
ρ[x, z], ρ[z, y]

)}
4 ρ[x, y](B)

for all x, y, z ∈ X. A lower transversal space is a set X together with a given
lower transverse on X. We call that an element J ∈ P is a spring of transversal
lower space X iff: ρ[x, y] = J if and only if x = y.

Let k = ℵα (α > 0) be a regular cardinal. Call a topological space X a lower
k-transversal space or d(Dα)-space if there exists the function ρ : X × X →
ωα ∪ {ωα} := W such that: ρ[x, y] = ωα if and only if x = y, ρ[x, y] = ρ[y, x], and
if there is d : W ×W →W such that (B) for all x, y, z ∈ X.

Open problem 2. Does for every regular cardinal k > ℵα there exists a lower k-
transversal nonlinearly orderable topological space? Does some of lower transversal
spaces have the fixed point property?
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We notice, in connection with this problem, that work of Ð. K u r e p a in 1963
is very important, where there is result that for every regular cardinal k > ℵ0 there
exists a k-metrizable (i.e., an Dα-space) nonlinearly orderable topological space. A
proof of this result was exhibit by S. T o d o r č e v i ć in 1981.

Karl Menger initiated the study of probabilistic metric spaces in 1942. A prob-
abilistic metric space in which the “distance” between any two points is a probabil-
ity distribution function. Every Menger’s space is a lower transversal space (see:
T a s k o v i ć 40]). The possibility of defining such notions as limit and continuity
in an arbitrary set is an idea which undoubtedly was first put forward by M a u -
r i c e F r é c h e t in 1904, and developed by him in his famous doctoral dissertation
1905.

In 1934 Ðuro Kurepa introduced the notion of a pseudo-metric space: and in
1936 also Ð. K u r e p a introduced, for a given ordinal α, the notion of (4α) or
(Dα) as the class of pseudo-metric spaces. The case α = 0 coincides with the class
of metric spaces.

A special feature in the former notions (of Fréchet and Kurepa) is the “triangular
relation” occurring in the elementary geometry and in many other cases.

At the same time, Fréchet consider instead of triangular relation, apparently
weaker, regularity condition: There exists a self-map f of R+ := (0,+∞) into
itself such that f(x) → 0 (x→ 0) and that for any triple (a, b, c) of elements of X
one has ρ(a, b) < x and ρ(b, c) < x implies ρ(a, c) < f(x).

Fréchet remarked that metric spaces (X, ρ) and preceding spaces (X, ρ, f) with
the regularity condition have similar properties. In 1910 he asked whether this
two classes of spaces should be the same. C h i t t e n d e n in 1917 confirmed this
conjecture. A simple proof was exhibited by F r i n k in 1937.

We remarked that an important example of upper transversal spaces is also and
every Fréchet’s space with the regularity condition. For this an upper bisection
function g : (R0

+) → (R0
+) can be defined by g(s, t) = max{x, f(x)}.

On the other hand, let τ = ωµ be a regular cardinal number, X a set, and
(G,+,4) a linearly ordered abelian group with cofinality cof(G) = ωµ at the
identity element 0 ∈ G (which means that 0 is the infimum of strictly decreas-
ing τ -sequence {xα : α ∈ τ} ⊂ G\{0}). An τ-metric on X is a function
ρ : X × X → G which satisfies all the metric axioms (i.e., ρ[x, y] = 0 if and
only if x = y, ρ[x, y] = ρ[y, x] and ρ[x, y] 4 ρ[x, z] + ρ[z, y]).

This definition of spaces X was given by R. S i k o r s k i in 1950 using the
name ωµ-metrizable topological space (if its topology can be induced by some
ωµ-metric on X).

Call, for k = ℵα (α > 0), a topological space X a k-metrizable space or a
Dα-space if there exist ρ : X × X → ωα ∪ {ωα} and φ : ωα → ωα such that:
ρ(x, y) = ωα if and only if x = y, ρ(x, y) = ρ(y, x), and if ρ(x, y) > φ(ξ) implies
ρ(x, z) > ξ. This definition of space X was given by Ð. K u r e p a in 1934.

Obviously, ωµ-metrizable topological spaces are fundamental examples of upper
transversal spaces with the upper bisection function g : G × G → G defined by
g(s, t);= s+ t.

Also, Dα-spaces of Ð. K u r e p a for α > 0 are fundamental examples of lower
transversal spaces with the lower bisection function d : P × P → P defined by
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d(s, t) := inf{ξ, φ(ξ)} for some function φ : ωα → ωα and ξ < ωα. A funda-
mental first example of upper transversal space for the upper bisection function
g : (R0

+)2 → R0
+ defined by g(s, t) := s+ t is a metric space.

For further facts on transversal spaces see: T a s k o v i ć [37]. In the next two
sections we give an asymptotic fixed point theory on new transversal chaos spaces.

For other examples of transversal spaces as: transversal intervally spaces, transver-
sal normed spaces, transversal intervally ordered spaces, transversal spaces with
nonnumerical transverse, transversal edges spaces, and transversal spring spaces,
see: T a s k o v i ć [40].

2. Transversal lower chaos spaces

Let X be a nonempty set. The function A : X × X → [a, b] (or A :
X × X → (a, b]) for some −∞ ≤ a < b ≤ +∞ is called a lower chaos
transverse on X (or lower chaos transversal) iff: A(x, y) = b if and only if
x = y for all x, y ∈ X.

A lower transversal chaos space (or lower chaos space) is a set X
together with a given lower chaos transverse A on X denoted its by X :=
(X,A). We call that b ≤ +∞ is a spring of the space X := (X,A).

Otherwise, the function A is called a semilower chaos transverse on
X (or semilower chaos transversal) iff: A(x, y) = b implies x = y for all
x, y ∈ X. A semilower chaos transversal space X := (X,A) is a set X
together with a given semilower chaos transverse on X. For any nonempty
set S in the lower chaos transversal space X the trh.diameter of S is defined
as

trh.diam(S) := inf
{
A(x, y) : x, y ∈ S

}
;

it is an element in [a, b], A ⊂ B implies trh.diam(B) 6 trh.diam(A). The
relation trh.diam(S) = b holds if and only if S is a one point set.

Elements of a lower chaos transversal space will usually be called points.
Given a lower chaos transversal space X := (X,A) and a point z ∈ X, the
open ball of center z and radius r > 0 is the set

A
(
B(z, r)

)
:=

{
x ∈ X : A(z, x) > b− r

}
for b < +∞,

and A(B(z, r)) := {x ∈ X : A(z, x) > r} for b = +∞. The convergence
xn → x as n→∞ in the lower chaos transversal space X := (X,A) means
that

A(xn, x) → b (b < +∞) as n→∞,

or equivalently, for every ε > 0 there exists an integer n0 such that the
relation n > n0 implies A(xn, x) > b− ε.

If b = +∞, then the lower chaos convergence xn → x as n → ∞ in the
lower chaos transversal space X := (X,A) means that A(xn, x) → +∞ as
n→∞ or equivalently, for every ε > 0 there exists an integer n0 such that
the relation n ≥ n0 implies A(xn, x) > ε.
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The sequence {xn}n∈N in the lower chaos transversal space X := (X,A)
is called lower transversal chaotic sequence (or lower chaotic Cauchy
sequence) iff for every ε > 0 there is an n0 = n0(ε) such that

A(xn, xm) > b− ε for all n,m > n0

for b < +∞, and A(xn, xm) > ε for all n,m ≥ n0 if b = +∞. Let X :=
(X,A) be a lower chaotic transversal space and T : X → X. We notice,
from Ta s k o v i ć [40], that a sequence of iterates {Tn(x)}n∈N in X is said
to be lower transversal chaotic sequence if and only if

lim
n→∞

(
trh.diam{T k(x) : k > n}

)
= b.

In this sense, a lower transversal chaos space is called lower chaotic
complete iff every lower transversal chaotic sequence converges.

Also, a space X := (X,A) is said to be lower chaotic orbitally com-
plete (or lower chaotic T -orbitally complete) iff every lower chaotic transver-
sal sequence which is contained in O(x) := {x, T (x), T 2(x), . . .} for some
x ∈ X converges in X.

A function f mapping X into the reals is f-orbitally upper semicon-
tinuous at p ∈ X iff {xn}n∈N is a sequence in O(x) and xn → p (n → ∞)
implies that f(p) > lim. sup f(xn).

LetX := (X,A) be a lower chaotic transversal space. A mapping T : X →
X is said to be lower chaotic contraction if there exists an 0 6 λ < 1
such that

A
(
T (x), T (y)

)
> λA(x, y) + b(1− λ), b < +∞,(Le)

for all points x, y ∈ X. For further facts on the lower chaotic contractions
see: T a s k o v i ć [40].

Let (X,AX) and (Y,AY ) be two lower chaotic transversal spaces for b <
+∞ and let T : X → Y . In order, we notice from T a s k o v i ć [40], that
T is lower chaotic continuous at x0 ∈ X iff for every ε > 0 there exists
a δ > 0 such that for every x ∈ X the following relation holds that

AX(x0, x) > b− δ implies AY

(
T (x0), T (x)

)
> b− ε.

A typical first example of a lower chaotic continuous mapping is the lower
chaotic contraction on the lower chaos transversal space X := (X,A). For
the further facts on the lower chaotic continuous mappings see: T a s k o v i ć
[40].

If b = +∞ and a ≥ 0, a mapping T : X → X is said to be lower chaotic
contraction if there exists an q > 1 such that

A
(
T (x), T (y)

)
≥ qA(x, y) for all x, y ∈ X.(1)

Then, if X := (X,A) is a lower chaotic T -orbitally complete lower chaos
transversal space, then T has a unique fixed point in the lower chaos space
X.
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Also, in the case b = +∞, let X := (X,AX) and Y := (Y,AY ) be two
lower chaos transversal spaces and let T : X → Y . The mapping T is lower
chaotic continuous at x0 ∈ X iff for every ε > 0 there exists a δ > 0 such
that for every x ∈ X the following relation holds as

AX(x, x0) > δ implies AY

(
T (x), T (x0)

)
> ε.

A typical first example of a lower chaotic continuous mapping is the map-
ping T with property (1). For further facts see: T a s k o v i ć [40].

Let X be a nonempty set, T : X → X, and let A : X × X → [a, b] (or
A : X × X → (a, b]) for some −∞ ≤ a < b ≤ +∞ be a given function.
We shall introduce the concept of lower chaos TCS-convergence in a space
X, i.e., a lower chaos transversal space X := (X,A) satisfies the condition
of lower chaos TCS-convergence iff x ∈ X and if A(Tnx, Tn+1x) → b
(n→∞) implies that {Tn(x)}n∈N has a convergent subsequence.

Theorem 1. Let T be a mapping of semilower chaos space X := (X,A)
into itself, where X satisfies the condition of lower chaos TCS-convergen-
ce. Suppose that for all x, y ∈ X there exist a sequence of real functions
{αn(x, y)}n∈N such that αn(x, y) → b (n→∞) and positive integer m(x, y)
such that

A(Tn(x), Tn(y)) > αn(x, y) for all n > m(x, y),(D)

where A : X ×X → [a, b] for some −∞ ≤ a < b ≤ +∞. If x 7→ A(x, T (x))
is a T -orbitally upper semicontinuous function or T is orbitally continuous,
then T has a unique fixed point ξ ∈ X and Tn(x) → ξ (n → ∞) for each
x ∈ X.

Proof. For y = T (x) from (D) we have that A(Tnx, Tn+1x) > αn(x, Tx)
for all n > m(x, Tx)), and thus we obtain that A(Tnx, Tn+1x) → b (n →
∞). This implies (from lower chaos TCS-convergence) that the sequence of
iterates {Tn(x)}n∈N has a convergent subsequence {Tn(i)(x)}i∈N with the
limit point ξ ∈ X. Since x 7→ A(x, T (x)) is T -orbitally upper semicontinu-
ous, we get

A(ξ, T (ξ)) > lim sup
i→∞

A(Tn(i)x, Tn(i)+1x) = lim sup
n→∞

A(Tnx, Tn+1x) = b,

which implies that A(ξ, T (ξ)) = b, i.e., ξ = T (ξ). On the other hand, if T
is orbitally continuous the proof of previous fact is trivial. We complete the
proof by showing that T can have at most one fixed point. Indeed, if we
suppose that ξ 6= η were two fixed points, then from (D) we have

A(ξ, η) = A(Tn(ξ), Tn(η)) > αn(ξ, η) for every n > m(ξ, η);

taking limits as n → ∞ we obtain a contradiction. Thus we obtain that
ξ = η, i.e., T has a unique fixed point in X. The proof is complete.

Note that, from the preceding proof of Theorem 1, we can give the fol-
lowing local form of this statement.
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Theorem 2. (Localization of (D)). Let T be a mapping of semilower chaos
space X := (X,A) into itself, where X satisfies the condition of lower chaos
TCS-convergence. Suppose that for each x ∈ X there exist a sequence of real
functions {αn(x, Tx)}n∈N such that αn(x, Tx) → b (n → ∞) and positive
integer m(x) such that

A(Tn(x), Tn+1(x)) > αn(x, Tx) for all n > m(x),

where A : X ×X → [a, b] for some −∞ ≤ a < b ≤ +∞. If x 7→ A(x, T (x))
is a T -orbitally upper semicontinuous function or T is orbitally continuous,
then T has at least one fixed point in X.

The proof of this statement is totally analogous with the preceding proof
of Theorem 1.

Applications of Theorem 1. In connection with the preceding facts
we have the following two “asymptotic” statements for existence of a unique
fixed point as applications of Theorem 1 on lower chaos transversal spaces.

Corollary 1. Let X := (X, ρ), with the continuous lower chaos transverse
ρ ∈ R0

+, be a lower chaos complete lower chaos transversal space, T : X → X
is a continuous function, and ϕn : [a, b] → [a, b] for n ∈ N sequence of
continuous functions such that for every n ∈ N satisfying

ρ [Tn(x), Tn(y)] > ϕn (ρ[x, y]) for all x, y ∈ X;

and assume also that there exists a function ϕ : [a, b] → [a, b] such that for
any t ∈ [a, b), ϕ(t) > t, ϕ(t) = b iff t = b, and ϕn → ϕ (n→∞) uniformly
on the range of ρ. Then T has a unique fixed point in X.

Proof. (Application of Theorem 1). Since ϕ is a continuous function such
that ϕ(t) = b if and only if t = b, we define a function A : X ×X → [a, b]
by A(x, y) := ϕ(ρ[x, y]), and define a sequence of functions {αn(x, y)}n∈N
by αn(x, y) := ρ[Tn(x), Tn(y)]. For all x, y ∈ X (x 6= y) we have

lim inf
n→∞

[Tn(x), Tn(y)] > lim inf
n→∞

ϕn(ρ[x, y]) = ϕ(ρ[x, y]) > ρ[x, y].

If there exist z, r ∈ X and ε < b such that lim infn→∞ ρ[Tn(z), Tn(r)] =
b− ε, then there exists k ∈ N such that ϕ

(
ρ[T k(z), T k(r)]

)
> b− ε, because

ϕ is continuous and ϕ(b− ε) > b− ε. This implies that

lim inf
n→∞

ρ [Tn(z), Tn(r)] = lim inf
n→∞

ρ
[
Tn(T kz), Tn(T kr)

]
>

> lim inf
n→∞

ϕn

(
ρ[T k(z), T k(r)]

)
= ϕ

(
ρ[T k(z), T k(r)]

)
> b− ε,

which is a contradiction. Thus ρ[Tn(x), Tn(y)] → b as n → ∞ for all
x, y ∈ X, which implies that all sequences of iterates, defined by T , are
equi-convergent in lower chaos transversal space (X, ρ). This means that
αn(x, y) → b (n → ∞) as in Theorem 1. Since ϕ(t) = b iff t = b, from
A(x, y) = ϕ(ρ[x, y]) = b it follows that ρ[x, y] = b, i.e., x = y. Also, x 7→
A(x, T (x)) := ϕ (ρ[x, T (x)]) is T -orbitally upper semicontinuous, because T ,
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ϕ, and ρ are continuous. Since X satisfies the condition of lower chaos TCS-
convergence (X is a lower chaos complete lower chaos transversal space),
applying Theorem 1, we obtain that T has a unique fixed point in X. The
proof is complete. �

Corollary 2. Let X := (X, ρ), with the continuous lower chaos transverse
ρ ∈ R0

+, be a lower chaos complete lower chaos transversal space, T : X → X
is a continuous function, and ϕn : [a, b] → [a, b] for n ∈ N sequence of
continuous functions such that for every n ∈ N satisfying

ρ [Tn(x), Tn(y)] >

> min {ϕn(ρ[x, y]), ϕn(ρ[x, Tx]), ϕn(ρ[y, Ty]), ϕn(ρ[x, Ty]), ϕn(ρ[y, Tx])}

for all x, y ∈ X; and assume also that there exists function ϕ : [a, b] → [a, b]
such that for any t ∈ [a, b), ϕ(t) > t, ϕ(t) = b iff t = b, and ϕn → ϕ
(n → ∞) uniformly on the range of ρ. Then T has a unique fixed point in
X.

Proof. (Application of Theorem 1). Since ϕ is a continuous function such
that ϕ(t) = b if and only if t = b, we define a function A : X×X → [a, b] by

A(x, y) := min {ϕ(ρ[x, y]), ϕ(ρ[x, Tx]), ϕ(ρ[y, Ty]), ϕ(ρ[x, Ty]), ϕ(ρ[y, Tx])}

and define a sequence of functions {αn(x, y)}n∈N by

αn(x, y) :=

= min
{
ρ[Tnx, Tny], ρ[Tnx, Tn+1x], ρ[Tny, Tn+1y], ρ[Tnx, Tn+1y], ρ[Tny, Tn+1x]

}
,

then A and αn(x, y) satisfy all the required hypotheses (as in the proof of
Corollary 1) in Theorem 1. Thus T has a unique fixed point in X. The
proof is complete. �

Further applications of Theorem 1. In further we give the following
examples of Theorem 1 as some examples of lower chaos transversal spaces.

Example 1. (Metric spaces). A fundamental first example of lower chaos
transversal space is a metric space. Indeed, if (X, q) is a metric space, then for the
lower chaos transverse ρ : X ×X → [a, b] ⊂ R0

+ for a < b defined by

ρ[x, y] =
(a− b)q[x, y]
1 + q[x, y]

+ b

for all x, y ∈ X we have that (X, ρ) is an example of a lower chaos transversal
space. In general, every metric space is an example of a lower chaos transversal
space.

Example 2. (Lower probabilistic spaces). A mapping F : R → R0
+ is called a

left distribution function if it is nondecreasing, left-continuous with inf F = 0
and supF = 1. We will denote by L the set of all left distribution functions. We
shall denote the left distribution function L(p, q) by Fp,q(x), whence Fp,q(x) will
denote the value of Fp,q at x ∈ R.
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An example of lower chaos transversal space is a lower probabilistic space
which is a nonempty set X together with the functions Fp,q(x) with the following
properties: Fp,q(x) = Fq,p(x), Fp,q(0) = 0,

Fp,q(x) = 1 for x > 0 if and only if p = q,(2)

and if there is a nondecreasing functions τ : [0, 1]2 → [0, 1] with the property
τ(t, t) > t for all t ∈ [0, 1] such that

Fp,q(x+ y) > τ(Fp,r(x), Fr,q(y))(Nm)

for all p, q, r ∈ X and for all x, y > 0. Then, from (2), we immediately obtain that
every lower probabilistic space, for ρ[p, q] = Fp,q(x) : X × X → [0, 1] is a lower
chaos transversal space.

Example 3. (Lower parametric chaos transversal spaces). In connection with
the preceding facts, the function N : X ×X × R → [a, b] for some −∞ ≤ a < b ≤
+∞ is called a lower parametric chaos transverse on X (or a lower parametric
chaos transversal) iff: for some c ∈ R0

+ is N(u, v, t) = b for every t > c if and only if
u = v, and limn→∞N(u, v, xn) = b for arbitrary nondecreasing sequence {xn}n∈N
in [c,+∞) with xn → +∞ (n→∞).

A transversal lower chaos parametric space is a set X together
with a given lower parametric chaos transverse N : X × X × R → [a, b]
for some −∞ ≤ a < b ≤ +∞ in notation X := (X,N). De facto, every
transversal lower chaos parametric space X := (X,N), for A = N , is a
lower chaos transversal space. For this spaces the following “asymptotic”
statement holds.

Corollary 3. Let X := (X,N) be a transversal lower parametric chaos space
with the continuous lower parametric chaos transverse N ∈ R0

+, T : X → X
is a continuous function, and X with the condition of lower chaos TCS-
convergence. Suppose that there exists a function ϕ : [c,+∞) → [c,+∞) for
some c ∈ R satisfying ϕ(t) > t for every t > c and

lim
n→∞

ϕn(t) = +∞ for every t > c,(As)

and such that

N
(
Tn(x), Tn(y), t

)
> N

(
x, y, ϕn(t)

)
for every n ∈ N,(E)

for every t > c, and for all x, y ∈ X. Then T has a unique fixed point in X.

Proof. (Application of Theorem 1). We define a function A : X ×X →
[a, b] for −∞ ≤ a < b ≤ +∞ by A(u, v) := N(u, v, t) and define a sequence
of functions {αn(u, v)}n∈N by αn(u, v) := N(u, v, ϕn(t)).

Thus αn(u, v) → limn→∞N(u, v, ϕn(t)) = b as n → ∞ as in Theorem
1. Also, x 7→ A(x, Tx) := N(x, Tx, t) is T -orbitally upper semicontinuous,
because T and N are continuous. Since A(u, v) := N(u, v, t) = b implies
u = v for every t > c, and since X satisfies the condition of lower chaos
TCS-convergence, applying Theorem 1 we obtain that T has a unique fixed
point in X. The proof is complete.
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We notice that the following “asymptotic” statement holds which is as a
special case of the preceding Corollary 3.

Corollary 4. Let X := (X,N) be a transversal lower parametric chaos space
with the continuous lower parametric chaos transverse N ∈ R0

+, T : X → X
is a continuous function, and X with the condition of lower chaos TCS-
convergence. Suppose that there exists an increasing continuous function ϕ :
[c,+∞) → [c,+∞) for some c ∈ R satisfying ϕ(t) < t for every t ∈ [c,+∞)
such that

N
(
Tn(x), Tn(y), ϕn(t)

)
> N(x, y, t)(B’)

for every n ∈ N, for all x, y ∈ X and for every t > c. Then T has a unique
fixed point in X.

Proof. Since for the function ϕ : [c,+∞) → [c,+∞) for some c ∈ R
there is the inverse function ϕ−1 : [c,+∞) → [c,+∞) with the property
(As), thus from (B’) we obtain a form of the inequality (E) in the form of
the following inequality as

N
(
Tn(x), Tn(y), t

)
> N

(
x, y, ϕ−n(t)

)
for n ∈ N

and for all x, y ∈ X. Thus, applying Corollary 3 we obtain this statement
as a consequence. The proof is complete.

An essential remark. We notice that the lower parametric transversal
chaos spaces are, de facto, also the lower chaos transversal spaces.

3. Transversal upper chaos spaces

Let X be a nonempty set. The function A : X × X → [a, b] (or A :
X × X → [a, b)) for some −∞ ≤ a < b ≤ +∞ is called an upper chaos
transverse on X (or lower chaos transversal) iff: A(x, y) = a if and only if
x = y for all x, y ∈ X.

An upper transversal chaos space (or upper chaos space) is a set X
together with a given upper chaos transverse A on X denoted its by X :=
(X,A). We call that a ≥ −∞ is a spring of the space X := (X,A).

Otherwise, the function A is called a semiupper chaos transverse on
a nonempty set X iff: A(x, y) = a implies x = y for all x, y ∈ X. A
semiupper chaos transversal space X := (X,A) is a nonempty set X
together with a given semiupper chaos transverse A on X.

Let X := (X,A) be an upper chaos transversal space, where T : X → X,
and A : X ×X → [a, b] for some −∞ ≤ a < b ≤ +∞ is a given functional.
For S ⊂ X we denoted trh.diam(S) as a transversal chaos diameter of S, in
the sense that

trh.diam(S) := sup
{
A(x, y) : x, y ∈ S

}
,

where S ⊂ Y implies trh.diam(S) ≤ trh.diam(Y ).
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Elements of an upper chaos transversal space will usually be called points.
Given an upper chaos transversal space X := (X,A), and a point z ∈ X,
the open ball of center z and radius r > 0 is the set

A(B(z, r)) =
{
x ∈ X : A(z, x) < a+ r

}
, for a > −∞,

and A(B(z, r)) := {x ∈ X : A(z, x) < r} for a = −∞. The upper chaos con-
vergence xn → x as n→∞ in the upper chaos transversal spaceX := (X,A)
means that the following fact holds that

A(xn, x) → a (−∞ < a) as n→∞,

or equivalently, for every ε > 0 there exists an integer n0 such that the
relation n > n0 implies A(xn, x) < a+ ε.

If a = −∞, then the upper chaos convergence xn → x as n → ∞ in the
upper chaos transversal space X := (X,A) means that A(xn, x) → −∞ as
n→∞ or equivalently, for every ε < 0 there exists an integer n0 such that
the relation n ≥ n0 implies A(xn, x) < ε.

The sequence {xn}n∈N in the upper transversal chaotic space X := (X,A)
is called upper transversal chaotic sequence (or upper chaotic Cauchy
sequence) iff: for every ε > 0 there is an n0 = n0(ε) such that

A(xn, xm) < a+ ε for all n,m > n0

for −∞ < a, and A(xn, xm) < −ε for all n,m ≥ n0 if a = −∞.
Let X be an upper chaos transversal space and T : X → X. We notice,

from Ta s k o v i ć [40], that a sequence of iterates {Tn(x)}n∈N in X is said
to be upper transversal chaotic sequence if and only if

lim
n→∞

(
trh.diam{T k(x) : k > n}

)
= a.

In this sense, an upper transversal chaos space is called upper chaotic
complete iff every upper transversal chaotic sequence upper chaotic con-
verges. Also, a space X := (X,A) is said to be upper chaotic orbitally
complete (or upper chaotic T -orbitally complete) iff every upper chaotic
transversal sequence which contained in O(x) for some x ∈ X upper chaotic
converges in X.

A function f mapping into the reals is f -orbitally lower semicontin-
uous at p ∈ X iff {xn}n∈N is a sequence in O(x) and xp → p (n → ∞)
implies that f(p) ≤ lim. inf f(xn).

Let X := (X,A) be an upper chaotic transversal space. A mapping
T : X → X is said to be upper chaotic contraction if there exists an
0 ≤ λ < 1 such that

A
(
T (x), T (y)

)
≤ λA(x, y) + a(1− λ), −∞ < a,(Up)

for all points x, y ∈ X. For further facts on the upper chaotic contractions
see: T a s k o v i ć [40].

Let (X,AX) and (Y,AY ) be two upper chaos transversal spaces for
a > −∞ and let T : X → Y . In order, we notice, from Tasković [40],
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that T is upper chaotic continuous at x0 ∈ X iff for every ε > 0 there
exists an δ > 0 such that for every x ∈ X the following relation holds that

AX(x0, x) < a+ δ implies AY

(
T (x0), T (x)

)
< a+ ε.

A typical first example of an upper chaotic continuous mapping is the
upper chaotic contraction on the upper chaos transversal space X := (X,A).
For the further facts on the upper chaotic continuous mappings see: T a s k o -
v i ć [40].

If a = −∞ and b ≤ 0, a mapping T : X → X is said to be upper chaotic
contraction if there exists an q > 1 such that

A
(
T (x), T (y)

)
≤ qA(x, y) for all x, y ∈ X.(3)

Then, ifX := (X,A) is an upper chaotic T -orbitally complete upper chaos
transversal space, then T has a unique fixed point in the upper chaos space
X.

Also, in the case a = −∞, let X := (X,AX) and Y := (Y,AY ) be two
upper chaos transversal spaces and let T : X → Y . The mapping T is
upper chaotic continuous at x0 ∈ X iff for every ε < 0 there exists an
δ < 0 such that for every x ∈ X the following relation hold as

AX(x, x0) < δ implies AY

(
T (x), T (x0)

)
< ε

A typical first example of an upper chaotic continuous mapping is the
mapping T with property (3). For further facts see: T a s k o v i ć [40].

Let X be a nonempty set, T : X → X, and let A : X ×X → [a, b] (or A :
X ×X → [a, b)) for some −∞ ≤ a < b ≤ +∞ be a given function. In 1986
Tasković investigated the concept of upper chaos TCS-convergence in a space
X, i.e., an upper chaos transversal spaceX := (X,A) satisfies the condition
of upper chaos TCS-convergence iff x ∈ X and if A(Tnx, Tn+1x) → a
(n→∞) implies that {Tn(x)}n∈N has a convergent subsequence.

Theorem 3. Let T be a mapping of semiupper chaos space X := (X,A)
into itself, where X satisfies the condition of upper chaos TCS-convergence.
Suppose that for all x, y ∈ X there exist a sequence of real functions in the
form {αn(x, y)}n∈N such that αn(x, y) → a (n → ∞) and positive integer
m(x, y) such that

A(Tn(x), Tn(y)) 6 αn(x, y) for all n > m(x, y),(G)

where A : X ×X → [a, b] for some −∞ ≤ a < b ≤ +∞. If x 7→ A(x, T (x))
is a T -orbitally lower semicontinuous function or T is orbitally continuous,
then T has a unique fixed point ξ ∈ X and Tn(x) → ξ (n → ∞) for each
x ∈ X.

Proof. For y = T (x) from (G) we have that A(Tnx, Tn+1x) 6 αn(x, Tx) for
all n > m(x, Tx)), and thus we obtain that A(Tnx, Tn+1x) → a
(n → ∞). This implies (from upper chaos TCS-convergence) that the se-
quence of iterates {Tn(x)}n∈N has a convergent subsequence {Tn(i)(x)}i∈N
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with the limit point ξ ∈ X. Since x 7→ A(x, T (x)) is T -orbitally lower
semicontinuous, we get

A(ξ, T (ξ)) 6 lim inf
i→∞

A(Tn(i)x, Tn(i)+1x) = lim inf
n→∞

A(Tnx, Tn+1x) = a,

which implies that A(ξ, T (ξ)) = a, i.e., ξ = T (ξ). On the other hand, if T
is orbitally continuous the proof of previous fact is trivial. We complete the
proof by showing that T can have at most one fixed point. Indeed, if we
suppose that ξ 6= η were two fixed points, then from (G) we have

a < A(ξ, η) = A(Tn(ξ), Tn(η)) 6 αn(ξ, η) for every n > m(ξ, η);

taking limits as n → ∞ we obtain a contradiction. Thus we obtain that
ξ = η, i.e., T has a unique fixed point ξ ∈ X. The proof is complete. �

Remarks. We notice that Theorem 3 is a generalization of Caccioppoli’s theo-
rem as well as many others.

Also, Theorem 3 is a far-reaching generalization of well-known Kantorovitch’s
theorem in 1939 year in numerical analysis as and a generalization of all theorems
of elementary fixed point theory!? For this see: T a s k o v i ć [40].

We notice that a variant of this statement (of Theorem 3) has been for the first
time proved 21 years ago in: T a s k o v i ć [Fundamental elements of the fixed
point theory, ZUNS-1986, Theorem 4, p. 170]. Many authors this historical fact
are to neglect and to ignore.

Note that, from the preceding proof of Theorem 3, we can give the fol-
lowing local form of this statement.

Theorem 4. (Localization of (G)). Let T be a mapping of semiupper chaos
space X := (X,A) into itself, where X satisfies the condition of upper chaos
TCS-convergence. Suppose that for each x ∈ X there exist a sequence of real
functions {αn(x, Tx)}n∈N such that αn(x, Tx) → a (n → ∞) and positive
integer m(x) such that

A(Tn(x), Tn+1(x)) 6 αn(x, Tx) for all n > m(x),

where A : X ×X → [a, b] for some −∞ ≤ a < b ≤ +∞. If x 7→ A(x, Tx)
is a T -orbitally lower semicontinuous function or T is orbitally continuous,
then T has at least one fixed point in X.

The proof of this statement is totally analogous with the preceding proof
of Theorem 3. A brief suitable proof of this statement may be found in
T a s k o v i ć [40].

Applications of Theorem 3. In connection with the preceding facts
we have the following “asymptotic” statements for the existence of a unique
fixed point as applications of Theorem 3 on upper chaos transversal spaces.

Corollary 5. Let (X, ρ), with the continuous chaotic transverse ρ ∈ R0
+,

be an upper chaos complete upper chaos transversal space, T : X → X is



90 Transversal Chaos Spaces and Asymptotic Fixed Points

a continuous function, and ϕn : [a, b] → [a, b] (for n ∈ N) a sequence of
continuous functions such that for every n ∈ N satisfying

ρ[Tn(x), Tn(y)] ≤ ϕn (ρ[x, y]) for all x, y ∈ X;(K)

and assume also that there exists a function ϕ : [a, b] → [a, b] such that for
any t ∈ (a, b], ϕ(t) < t, ϕ(t) = a iff t = a, and ϕn → ϕ uniformly on the
range ρ. Then T has a unique fixed point ξ ∈ X and all sequence of Picard
iterates defined via T converges to ξ.

Annotations. In connection with this, we notice that in 2003 W. Kirk intro-
duced the notion of asymptotic contraction on a metric space, and proved a fixed
point theorem for such contractions of the preceding type (K). De facto, in special
case of Corollary 5, for the metric spaces, we obtain Kirk’s theorem [17, Theorem
2.1, p. 647].

Proof of Corollary 5. (Application of Theorem 3). Suppose that that
all the conditions of Corollary 5 are satisfied. We prove that all conditions
of Theorem 3 are satisfied. Let us define A by A(x, y) = ϕ (ρ[x, y]), and
define a sequence of functions {αn(x, y)}n∈N by αn(x, y) = ρ[Tnx, Tny] for
x, y ∈ X. Since ϕ(t) < t for t > a we get that

A (Tnx, Tny) = ϕ (ρ[Tnx, Tny]) < ρ[Tnx, Tny] = αn(x, y)

that is that the condition (G) is satisfied. Since ϕ(t) = a iff t = a, from
A(x, y) = ϕ (ρ[x, y]) = a it follows that ρ[x, y] = a, i.e., x = y. On the other
hand, for all x, y ∈ X (x 6= y) we have

lim sup
n→∞

ρ[Tn(x), Tn(y)] 6 lim sup
n→∞

ϕn (ρ[x, y]) = ϕ (ρ[x, y]) < ρ[x, y].

If there exist z, r ∈ X and ε > 0 such that lim supn→∞ ρ[Tn(z), Tn(r)] =
a+ ε, then there exists k ∈ N such that ϕ(ρ[T k(z), T k(r)]) < a+ ε, because
ϕ is continuous and ϕ(a+ ε) < a+ ε. This implies that

lim sup
n→∞

ρ[Tn(z), Tn(r) = lim sup
n→∞

ρ[Tn(T kz), Tn(T kr)] 6

6 lim sup
n→∞

ϕn(ρ[T k(z), T k(r)]) = ϕ(ρ[T k(z), T k(r)]) < a+ ε,

which is a contradiction. Thus ρ[Tn(x), Tn(y)] → a as n → ∞ for all
x, y ∈ X, which implies that all sequences of iterates, defined by T , are
equi-convergent in upper general edges transversal space (X, ρ). This means
that αn(x, y) → a (n→∞) as in Theorem 3.

Also, x 7→ A(x, T (x)) := ϕ(ρ[x, T (x)]) is lower semicontinuous, because
T , ϕ and ρ are continuous. Since X satisfies the condition of upper chaos
TCS-convergence (X is an upper chaos complete upper chaos transversal
space), applying Theorem 3 we obtain that T has a unique fixed point ξ ∈ X
and all Picard iterates converge to ξ. The proof is complete.
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Corollary 6. Let (X, ρ), with continuous chaos transverse ρ ∈ R0
+, be an

upper chaos complete upper chaos transversal space, T : X → X is a contin-
uous function, and ϕn : [a, b] → [a, b] (for n ∈ N) a sequence of continuous
functions such that for all n ∈ N satisfying

ρ[Tn(x), Tn(y)] 6

6 max{ϕn(ρ[x, y]), ϕn(ρ[x, Tx]), ϕn(ρ[y, Ty]), ϕn(ρ[x, Ty]), ϕn(ρ[y, Tx])}
for all x, y ∈ X; and assume also that there exists a function ϕ : [a, b] → [a, b]
such that for any t ∈ (a, b], ϕ(t) < t, ϕ(t) = a iff t = a, and ϕn → ϕ
(n → ∞) uniformly of the range of ρ. Then T has a unique fixed point
ξ ∈ X and all sequences of Picard’s iterations defined by T convergates to ξ.

Proof. (Application of Theorem 3). We define a function A : X ×X → [a, b]
for some −∞ ≤ a < b ≤ +∞ by the following equality in the form as

A(x, y) := max{ϕ(ρ[x, y]), ϕ(ρ[x, Tx]), ϕ(ρ[y, Ty]), ϕ(ρ[x, Ty]), ϕ(ρ[y, Tx])}
and define a sequence of functions {αn(x, y)}n∈N by the following equality
in the adequate form as the following fact

αn(x, y) :=

= max{ρ[Tnx, Tny], ρ[Tnx, Tn+1x], ρ[Tny, Tn+1y], ρ[Tnx, Tn+1y], ρ[Tny, Tn+1x]}.
It is easy to show that A and {αn(x, y)}n∈N satisfy all the required hy-

pothesis (similarly as in the proof of Corollary 5) in Theorem 3. Applying
Theorem 3 we get conclusion of Corollary 6. This completes the proof. �

We notice that Corollary 6 is an asymptotic version of Ivanov’s theorem
(with the metric spaces) on upper chaos transversal spaces, see: I v a n o v
[15].

Further applications of Theorem 3. In further we give the following
consequences of Theorem 3 as some examples of upper chaos transversal
spaces.

Example 4. (Metric spaces). A fundamental first example of upper chaos
spaces is a metric space. Indeed, if (X, d) is a metric space, then for the upper
chaos transverse ρ : X ×X → [a, b] ⊂ R0

+ for a < b defined by

ρ[x, y] =
(b− a)d(x, y)
1 + d(x, y)

+ a

for all x, y ∈ X we have that (X, ρ) is an example of an upper chaos transversal
space. In general, every metric space is an example of an upper chaos transversal
space.

Example 5. (The extended real line R). The function f is defined in R by
f(x) = x/(1 + |x|) is a bijection on R on the open interval (−1, 1) ⊂ R, and the
inverse mapping g being defined by g(x) = x/(1 − |x|) for |x| < 1. Let R be the
set which is the union of R and two new elements written +∞ and −∞ (points at
infinity); then we extend f to a bijection of R onto [−1, 1] by putting f(+∞) = 1,
f(−∞) = −1, and write again g for the inverse mapping.
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We can apply this process described to define R as an upper chaos transversal
space by putting for the upper chaos transverse ρ : R× R → [0, 2] that is

ρ[x, y] =
∣∣∣∣ x

1 + |x|
− y

1 + |y|

∣∣∣∣
for all x, y ∈ R. (We notice that for x > 0 is ρ[+∞, x] = 1/(1 + |x|), and for x ≤ 0
that is ρ[−∞, x] = 1/(1 + |x|)).

Example 6. (Upper probabilistic spaces). A mapping M : R → R is called
upper distribution function if it is nonincreasing, left-continuous with infM =
0 and supM = 1. We shall denote by U the set of all upper distribution functions.
We shall denote the upper distribution function U(p, q) byMp,q(x), whenceMp,q(x)
will denote the value of Mp,q at x ∈ R.

An example of upper chaos transversal space is an upper probabilistic space
which is a nonempty set X together with the functions Mp,q(x) with the following
properties: Mp,q(x) = Mq,p(x), Mp,q(0) = 1,

Mp,q(x) = 0 for x > 0 if and only if p = q;(4)

and if there is nondecreasing function µ : [0, 1]2 → [0, 1] with the property µ(t, t) ≤ t
for all t ∈ [0, 1] such that

Mp,q(x+ y) 6 µ
(
Mp,r(x),Mr,q(y)

)
for all p, q, r ∈ X and for all x, y > 0. Then, from (4), we immediately obtain that
every upper probabilistic space, for ρ[p, q] = Mp,q(x) : X ×X → [0, 1] is an upper
chaos transversal space.

Example 7. (Upper parametric transversal chaos spaces). In connection with
the preceding facts, the function M : X ×X × R → [a, b] for some −∞ ≤ a < b ≤
+∞ is called an upper parametric chaos transverse on X (or upper parametric
chaos transversal) iff: there is c ∈ R0

+ such that M(u, v, t) = a for every t > c if and
only if u = v, and limn→∞M(u, v, xn) = a for arbitrary nondecreasing sequence
{xn}n∈N in [c,+∞) with xn → +∞ (n→∞).

A transversal upper parametric chaos space is a set X together
with a given upper parametric chaos transverse M : X × X × R → [a, b]
for some −∞ ≤ a < b ≤ +∞ in notation X := (X,M). De facto, every
transversal upper parametric chaos space X := (X,M), for A = M , is an
upper chaos transversal space. For this spaces the following “asymptotic”
statement holds as a consequence of Theorem 3.

Corollary 7. Let X := (X,M) be a transversal upper parametric chaos
space with the continuous upper parametric chaos transverse M ∈ R0

+,
T : X → X is a continuous function, and X with the condition of upper
chaos TCS-convergence. Suppose that there exists a function ϕ : [c,+∞) →
[c,+∞) for some c ∈ R satisfying (As) and ϕ(t) > t for every t > c, and
such that

M
(
Tn(x), Tn(y), t

)
≤M

(
x, y, ϕn(t)

)
for every n ∈ N,(R)

for every t > c, and for all x, y ∈ X. Then T has a unique fixed point in X.
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Proof. (Application of Theorem 3). We define a function A : X ×X → [a, b]
for some −∞ ≤ a < b ≤ +∞ by A(u, v) := M(u, v, t) and define a sequence
of functions {αn(u, v)}n∈N by αn(u, v) := M(u, v, ϕn(t)). Thus we obtain
the following fact that αn(u, v) → limn→∞ M(u, v, ϕn(t)) = a as n → ∞
as in Theorem 3. On the other hand x 7→ A(x, Tx) := M(x, Tx, t) is T -
orbitally lower semicontinuous, because T and M are continuous. Since
A(u, v) := M(u, v, t) = a implies u = v for every t > c, and since X
satisfies the condition of upper chaos TCS-convergence, applying Theorem
3 we obtain that T has a unique fixed point in X. The proof is complete. �

As a special case of Corollary 7 we obtain the following "asymptotic"
statement for transversal upper parametric chaos spaces.

Corollary 8. Let X := (X,M) be a transversal upper parametric chaos
space with the continuous upper parametric chaos transverse M ∈ R0

+,
T : X → X is a continuous function, and X with the condition of upper
chaos TCS-convergence. Suppose that there exists an increasing continuous
function ϕ : [c,+∞) → [c,+∞) for some c ∈ R satisfying ϕ(t) < t for every
t ∈ [c,+∞) such that

M
(
Tn(x), Tn(y), ϕn(t)

)
≤M(x, y, t) for every n ∈ N,(F)

for every t > c, and for all x, y ∈ X. Then T has a unique fixed point in X.

Proof. Since for the function ϕ : [c,+∞) → [c,+∞) for some c ∈ R there is
its inverse function ϕ−1 : [c,+∞) → [c,+∞) with the property (As), thus
by (F) we obtain

M
(
Tn(x), Tn(y), t

)
6 M(x, y, ϕ−n(t)) for n ∈ N,

and for all x, y ∈ X, i.e., this means that a form of inequality (R) holds.
Thus, applying Corollary 7 we obtain this statement as a consequence. The
proof is complete. �

An essential remark. We notice that the upper parametric transversal
chaos spaces are, de facto, also the upper transversal chaos spaces.
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